QUE ES EL RELOJ ATOMICO



RELOJ ATOMICO 
Un reloj atómico es un tipo de reloj que utiliza una frecuencia de resonancia atómica normal para alimentar su contador. Los primeros relojes atómicos tomaban su referencia de un Máser. Las mejores referencias atómicas de frecuencia (o relojes) modernas se basan en físicas más avanzadas que involucran átomos fríos y las fuentes atómicas. Las agencias de las normas nacionales mantienen una exactitud de 10-9 segundos por día y una precisión igual a la frecuencia del transmisor de la radio que bombea el máser. Los relojes atómicos mantienen una escala de tiempo continua y estable, el Tiempo Atómico Internacional (TAI). Para el uso cotidiano, se disemina otra escala de tiempo, el Tiempo Universal Coordinado (UTC). El UTC se deriva del TAI, pero se sincroniza usando segundos de intercalación con el Tiempo Universal (UT1), el cual se basa en el paso del día y la noche según las observaciones astronómicas.

El primero fue construido en 1948 por el Willard Frank Libby de los EEUU basándose en las ideas sobre un fenómeno extremadamente regular, la resonancia magnética molecular y atómica, del Nobel Isidor Isaac Rabi,[3] aunque la precisión conseguida por el amoníaco (molécula utilizada por el prototipo del NIST) no era muy superior a los estándares de la época basados en osciladores de cuarzo.

Hoy los mejores patrones de frecuencia atómicos se basan en las propiedades físicas que tienen las fuentes de emisión de cesio. El primer reloj atómico de cesio fue construido en 1955 en el Laboratorio Nacional de Física (NLP), en Inglaterra. Sus creadores fueron Louis Essen y John V.L Parry.[4]

En el año 1967 los relojes atómicos basados en cesio habían conseguido fiabilidad suficiente como para que la Oficina Internacional de Pesas y Medidas eligiera la frecuencia de vibración atómica de los dispositivos creados y perfeccionados por Essen como nuevo patrón base para la definición de la unidad de tiempo físico. Según este patrón, un segundo se corresponde con 9.192.631.770 ciclos de la radiación asociada a la transición hiperfina desde el estado de reposo del isótopo de cesio-133. La precisión alcanzada con este tipo de reloj atómico es tan elevada que admite únicamente un error de un segundo en 30.000 años. El reloj más preciso del mundo se diseña en el Observatorio de París, donde los actuales relojes atómicos tardan 52 millones de años para desfasarse un segundo. El nuevo objetivo de la investigación francesa es aumentar ese plazo a 32 mil millones de años. El estándar actual de los relojes atómicos en activo permite el atraso de un segundo cada 3.700 millones de años (NIST EU).


PRINCIPALES FUNCIONES:

  • Los usos más frecuentes de los relojes atómicos son: 
  • Redes de telefonía. 
  • Sistemas de Posicionamiento Global (GPS). 
  • Medición del tiempo. 
  • Calibración de equipos. 

INVESTIGACION

La mayoría de las investigaciones se centran en los objetivos, a menudo contradictorios, de hacer los relojes más pequeños, más baratos, más precisos y más fiables.

Las nuevas tecnologías, tales como peines de frecuencia de femtosegundo, redes ópticas y la información cuántica, han permitido a los prototipos de la próxima generación relojes atómicos. Estos relojes se basan en la óptica en lugar de las transiciones de microondas. Un obstáculo importante para el desarrollo de un reloj óptico es la dificultad de medir directamente las frecuencias ópticas. Este problema se ha resuelto con el desarrollo de la auto-referencia en modo bloqueado láseres, comúnmente conocida como peines de frecuencia de femtosegundo. Antes de la demostración del peine de frecuencias en el año 2000, las técnicas de terahercio eran necesarias para salvar la distancia entre frecuencias de radio y ópticas, y los sistemas para hacerlo eran engorrosos y complicados. Con el perfeccionamiento del peine de frecuencias de estas mediciones se han vuelto mucho más accesible y numerosos sistemas ópticos reloj se están desarrollando en todo el mundo.

No hay comentarios.:

Publicar un comentario